分享兴趣,传播快乐,

增长见闻,留下美好!

亲爱的您,这里是LearningYard新学苑。

今天小编为大家带来的是好学高数(五):微分的中值定理。

Share interest, spread happiness, increase knowledge,

and leave a beautiful place!

Dear you, this is LearningYard.

Today&39;s edition brings you the Mean Value Theorem of Differential.

中值定理

一、罗尔定理

(1)f(x)在闭区间[a ,b]上连续;

(2)f(x)在开区间(a,b) 内可导;

(3)f(x)在区间端点的函数值相等,即f(a)=f(b) ,

那么在(a,b) 内至少有一点ξ (a<ξ<b),使得函数f(x) 在该点的导数等于零,即f&39;(ξ)=0。

(可用来证明唯一性)

1、 Rolle&39;s theorem

(1) f (x) is continuous on the closed interval [a, b];

(2) F (x) is derivable in the open interval (a, b);

(3) The function values of f (x) at the end of the interval are equal, that is, f (a)=f (b), so there is at least one point in (a, b) ξ (a< ξ< b) , so that the derivative of function f (x) at this point is equal to zero, that is, f &39;( ξ)= 0 (can be used to prove uniqueness)

二、拉格朗日中值定理

三、柯西中值定理(参数方程)

洛必达法则

适用对象:0比0型、无穷比无穷型

当遇到无穷*0型,将其中一个乘数转化为分母,再进行求导。

Applicable objects: 0 to 0 type, infinite to infinite type When encountering infinite * 0 type, convert one of the multipliers to the denominator, and then take the derivative.

泰勒公式

(做题时使用频率小)

(Less frequently used in questions)

END

今天的分享就到这里了,如果您对文章有独特的想法,欢迎给我们留言。

让我们相约明天,祝您今天过得开心快乐!

That&39;s it for today&39;s sharing. If you have a unique idea about the article.please leave us a message.

Let us meet tomorrow I wish you a happy day today!

文案&排版:易春秀

审核:闫庆红